

UCC typologies & good practice assessment

Jacques Leonardi Transport for London University of Westminster

Brussels, 5 May 2011

1

Review objectives

- To review existing literature on urban consolidation centres (UCCs)
- To investigate different types of consolidation practice, considering both the business and environmental case
- To obtain the views of a sample of relevant parties on the appropriateness of different types of UCC and their impacts
- To carry out a preliminary evaluation of the situations in which each type of UCC is likely to be most appropriate

Good practice assessment (case study) objectives

- Evaluate the previously existing Office Depot deliveries to postcodes EC 1 - 4 (City of London) using diesel vans
- Compare this with the new Gnewt Cargo logistics system implemented using electric tricycles and electric vans for final delivery
- Evaluate the impacts
- Develop a concept model to trial a network of micro-consolidation centres in the Clear Zone area based on the segment analysis.
- Assuming the operation of the concept model, analyse the benefits of replacing current deliveries with micro-consolidation vehicles.

Methodology

- Comprehensive review of literature:
 - Identification of schemes
 - Details of scheme evaluation
 - General discussion/evaluation of UCCs
- Interviews with selection of relevant parties
- UCC evaluation:
 - Success/failure factors
 - Recommendations for evaluation

egioneEmilia-Romagna

Terminology

- Range of concepts/terminology, including:
 - Consolidation centres
 - Transhipment centres
 - Public logistics terminals
 - Urban platforms
 - Off-site stock room/logistics support centre
 - Collection points
- All above involve a physical centre, but boundaries are blurred
- Also other forms of consolidation

How does a UCC work?

100002-2023-000-05-05-7

Deliveries to store versus deliveries to consolidation centre

- Fewer vehicle kilometres
- Less time spent making deliveries
- Less time in congested traffic

Made possible by the INTERREG IVC programm

7

Analysis of UCCs by country and category

	Special	Shopping	Tow	Town/city			
Country	project (construction)	centre -	Specific district	Town/city- wide			
Austria	-	-	1	-	1		
Belgium	-	-	-	1	1		
Canada	-	-	-	1	1		
France	-	-	3	5	8		
Germany	1	-	4	9	14		
Italy	-	-	3	2	5		
Japan	-	1	2	-	3		
Monaco	-	-	-	1	1		
Netherlands	-	-	6	1	7		
Portugal	-	-	1	-	1		
Spain	-	-	1	-	1		
Sweden	1	1	2	-	4		
Switzerland	-	-	-	2	2		
United Kingdom	1	3	7	6	17		
U.S.A.	-	-	-	1	1		
Total	3	5	30	29	67		

Note:

Site Specific = UCC scheme serves a single site or commercial unit (of which three – Hammerby, Potsdamer Platz in Berlin, and Heathrow Airport are construction consolidation centres, the other five are shopping centres)

District = UCC scheme serves part of a town/city - usually historic centre

Town-wide = UCC scheme serves the whole town

UCCs by status

Research/	Pilot/Trial	Operational	Total
Feasibility			
26	13	28	67

Analysis of UCCs by date of investigation / start-up

1970-1975	1976-1990	1991-1995	1996-2000	2001+	Total
6	9	19	17	15	66

Classification of UCCs

- Special project UCCs:
 - Construction sites
 - Permanent or fixed period
- UCCs on single site with one landlord:
 - Airports
 - Shopping centres
- UCCs serving a town/city (or district of):
 - Geographical area: large or small
 - No. of companies: single or several

Construction Consolidation Centre Heathrow

European Union

Logistics Consolidation Centre Stockholm, Sweden

Freight Consolidation Scheme

Target Area - Broadmead

- **Broadmead, Bristol's** core retail area
- Approx 324 retail units
- **Air Quality Management Area**
- **Clear Zones** Strategy
- Broadmead **Expansion**

THE CIVITAS INITIATIVE IS CO-FINANCED BY THE EUROPEAN UNION

Bristol Consolidation Centre

Ljubljana

START

Consolidation Centre Location

- Located on western fringe of Bristol on established industrial estate;
- Close to strategic road network (M5, M4);
- Approx 3000 sq ft warehousing space;
- 10 miles from city centre target area;
- Approx 25 mins journey time to target area;
- Operates using a 9 tonne electric vehicle and an 18 tonne Euro 4 vehicle;
- All drivers are SAFED trained;

Gestion de la Plate-forme

La Rochelle city centre consolidation and use of electric vehicles for final delivery, managed by the provider Elcidis

Regione Emilia-Romagna

Key evaluation issues

- Lack of rigorous (published) assessment of previous schemes:
 - Little quantification of impacts
 - No standardised methodology for assessment
 - Issues of confidentiality
- Little or no prior knowledge of UCC concept amongst certain "interested parties"

Impacts included in UCC scheme evaluations identified

Impacts of UCCs	Number of the UCC studies quantifying this (out of the 14 studies identified)
Changes in the number of vehicle trips	7
Changes in total fuel consumed	6
Changes in vehicle emissions	5
Changes in the number of vehicle kilometres	4
Changes in the number of vehicles	4
Vehicle load factor	4
Changes in parking time and frequency	4
Changes in operating costs	2
Changes in travel time	1
Goods delivered per delivery point	1

Evidence of transport impacts

- Claimed reductions in key measures (e.g. vehicles, trips, kms, utilisation):
 - Little rigorous analysis
 - High localised savings, limited overall impact
- Ability to separate trunk and local movements:
 - Alternative modes or vehicle types
 - Focus on improving "last mile"

Made possible by

Wider supply chain impacts

- Many potential benefits, limited documented evidence
- Improved management and visibility of supply chain
- Specific benefits can include:
 - Local stockholding, with pre-retailing and quick response
 - More productive floorspace use at destination
 - Fewer deliveries (and disruption) at destination
 - Returns and recycling

Success factors

- Availability of funding
- Strong public and private sector involvement
- Bottom-up pressure from local interests
- Supporting regulatory framework
- Significant existing transport problems in local area
- Ability to resolve wider logistics problems
- Single manager/coordinator

Recommendations

- Allow time to establish scheme viability
- Public funding needed for "pump priming"
- Ensure big role for private sector
- Raised awareness and guidance needed (esp. for public sector)
- Consider wider logistics impacts (esp. costs)
- Firmly establish "before" situation to allow proper evaluation

Made possible by

Variables and indicators to be included in a comprehensive UCC evaluation

Broad Indicators	Narrow Indicators
 1) Logistics and supply chain changes Efficiency at receiving premises due to fewer, more reliable deliveries Efficiency/sales at receiving premises due to stockholding & value added services On-time delivery (punctuality) Change in order cycle time Effect of greater reliability on stockholding strategy Change in total handling costs Change in total freight transport costs 2) Social/environmental impact of UCC vehicle activity Fossil fuel consumption Emissions Congestion 	 3) Goods vehicle activity Vehicle kms Vehicle trips Vehicle load factor 4) Loading/unloading activity Space utilisation Time

General conclusions

- Lack of rigorous evaluation of scheme impacts more needed
- "New generation" schemes seem to offer potential
- Further work needed on allocation of costs and benefits
- UCC concept seems to be viable given certain preconditions

Made possible by

Good practice assessment: Office Depot Consolidation Centre and Electric Vehicles Part 1

- Trial description
- Impact evaluation survey

Regione Emilia-Romagna

"Before" and "after" delivery system

- Original diesel van delivery system studied Feb–March 2009 with updated information provided before the trial went live. In the original system diesel vans departed from a suburban depot to make deliveries to postcodes in central London (EC1, EC2, EC3 & EC4)
- New Cargocycle[®] and electric van delivery system studied in Nov 2009 – May 2010
- New delivery system was implemented incrementally:
 - Initially an intermediate system was used which involved Cargocycles[®], electric and diesel vans (Nov 2009-March 2010)
 - The new system using only Cargocycles[®] and electric vans was fully implemented in May 2010
- In the new system a diesel truck is used to transport goods from the suburban depot to the City of London microconsolidation centre for onward delivery by Cargocycles[®] and electric vans

Made possible by

City of London delivery area

Standard 3.5t diesel van: Capacity of 1270 kg and 9 m³

[•] Electrically assisted tricycle capacity of 180 kg and 1.5 m³

Electric van: Capacity of 445 kg and 3 m³

Impact of changes on distance driven in London, and CO₂

	BEFORE	Intermediate	AFTER	% change
Time	October 2009	March 2010	May 2010	Aller-Delore
Fleet change	7 vans, no cycles	4 vans, 6 cycles, 1 elec van, 1 truck	0 van, 6 cycles, 3 elec vans, 1 truck	
All diesel vans miles/day	322	184	0	
Truck miles/day	0	34	34	
Cargocycles + elec van miles	/ day 0	63	81	
Total miles in Greater London	/ day 322	281	115	-64%
Miles within the City of Londo	n/day 42	89	83	+98%(+350?)
Miles outside the City of Lond	lon / day 280	192	32	-89%
kgCO ₂ e/ parcel	0.155	0.134	0.058	-62%
Total miles / parcel	0.282	0.244	0.130	-54%
	***	👌 🙆 🗖 Regio	neEmilia-Romagna	

European Union

Progressive impacts of fleet replacement by Cargocycles[®] and electric vans

Impact of vehicle length on kerbside parking occupancy during one day

	BEFORE	AFTER
	7 vans, no cycle	6 cycles, 3 elec vans
All diesel vans stops/day	140	0
All Cargocycles stops/day	0	80
All electric vans stops/day	0	60
Parking length requirement: Metres for all diesel vans/c	lay 799	0
Parking length requirement: Metres for all Cargocycles	′day 0	188
Parking length requirement: Metres for all electric vans,	/day 0	199
Parking length requirement: Total metres for all vehicles	s/day 799	387
Parking length requirement index of all vehicles/day	100	48
Reduction Parking length requirement for all vehicles/d	ay	- 52%

Vehicle length: Diesel van: 5.71m; Electric van: 3.32m, Cargocycle: 2.35m

RegioneEmilia-Romagna

Consolidation centre close to the City of London

Summary of trial evaluation, part 1 results and impacts

- Mileage is increased in City of London but reduced elsewhere in London
- Confirmed reduction in overall greenhouse gas emissions
- Electric vans are used in addition to Cargocycles for transport of parcels with slight bigger volume
- The trial specific conditions:
 - The type of business is suitable for Cargocycles (parcels, not pallets)
 - Size and weight of parcels are rather small
 - Delivery area in City Centre has a high density of clients
 - A small consolidation centre is available close to the delivery area

Good practice assessment Part 2

- The consolidation network impact model
- Scenario and analysis
- Recommendations

Modeling the impacts of a network of consolidation centres

- Calculate the before-after impacts using real case data for about 80 variables
- For 18 scenarios, only one variable is assumed to change at a time Each change corresponds to the question: what would happen if another company would join the network, and the variable changed would be the single difference from the real case of Gnewt
- For 2 network scenarios, the changes are calculated for adding 4 companies and 4 centres. Scenario A: 4 identical, scenario B 4 different companies

Examples: extension of the area and extension of the number of vehicles

	Objective of a	this family of scenario: unders	standing i	how singt	ilar chan	ges in th	e system	of cargocyd	cle introdu	uction infl	uence the	whole imp	acts			
REAL CASE	Real ca	ase observation	ns ar	nd ca	Icula	ation	s									
	Real case: B	2B parcels deliveries in the Ci	ty of Lon	don												
REAL CASE	Fleet						Ratio			Rounds/	Jay	Capacity	by weight in	kg		
					Numhe		Cycle		Elec							Total
				Numher	rof	Number	ner		van ner	Rounds/	Rounds/	Total van	Total cycle	Total elec	Truck	van+cycle+ele
	% of fleet		Number	of	electric	of	diesel		diesel	cvcle/	elec yan/	canacity	canacity in	van canacity	canacity	c van canacity
	renlacement	Fleet change	ofvans	cycles	vans	trucks	van		van	dav	dav.	lin ka	ka	in ka	in ka	hy weight
	0		7	0,000	0	0					00) 0	0000				0000
DEFURE REAL	0	7 vans, no cycles		0	0	0	0.0574		0.4000		0	0090	0	0	10000	0090
AFTER REAL	100	U vans, 6 cycles, 3 elec vans	U	6	3	1	0.8571		0.4286	2	2	U U	2400	2670	10263	5070
1	Extens	sion scenario 1:	deli	verv	area	ı exte	ende	d from	the	Citv	of Lo	ndor	ι to the	e whole	Clea	r Zone
	Seenerie 4	· All conditions of husing	no ond l		for ob		ro octi	dontionluu	ith Dool	Cooo c	veent fe	r milooa		horofyono	with 704	mileo for 161
SCENADIO 4	Scenario i Flaat		55 anu i		aner una	anges a I		ueniicai w	illi Real		acept to	r nneag Icenseitu		<u>Jer urvans,</u> te	WILIT 7 04	THRESTOR TO
SCENARIO I	Fieel						Ratio			Roundszi	зау	Сарасну	by weight in	ку		
					Numbe		Cycle		Elec							Total
				Number	rof	Number	per	% change	van per	Rounds/	Rounds/	Total van	Total cycle	Total elec	Truck	van+cycle+ele
	% of fleet		Number	of	electric	of	diesel	from real	diesel	cycle/	elec van/	capacity	capacity in	van capacity	capacity	c van capacity
	replacement	Fleet change	of vans	cycles	vans	trucks	van	case ratio	van	day	day	in kg	kg	in kg	in kg	by weight
BEFORE	0	16 vans, no cycles	16	0	0	0				0	0	20320	0	0	0	20320
		O vans, 14 cycles, 7 elec														
AFTER	100	vans, 2 trucks	0	14	7	2	0.875	2	0.4375	2	2	0	5600	6230	20526	11830
2	Extens	sion scenario 2:	200	vehi	cles	thro	ugh	additi	onal	iden	tical	busin	iess in	City of	Lone	don
	Scenario 2	: All conditions of busine:	ss and l	pefore-a	after cha	andes a	are set i	dentical w	ith Real	Case, e	except 20	00 diese	l vans inste	ad of 7 for F	BEFORE	. Same rate (
SCENARIO 2	Fleet						Ratio			Rounds/	dav	Capacity	by weight in	ka		
					Numbo		Cuele		Elec							Total
				Number	rof	Number	logr	% chongo		Doundo/	Doundo	Total yon	Total avala	Total alaa	Truck	vontovolotolo
	% of floot		Number	of	oloctric	of	ldiacal	from roal	van per	revelo/	Nounus/	conocity	conocity in	von conocitu	conocity	c van canacity
	70 OF HEEL	Elect change	of yone	oveloe	vane	trucke	von	nom real	ulesel	dov	day	in ka	Lapacity III	in ka	in ka	c van capacity
PERAPE	replacement	neet change	ur varis	cycles ~	vans	TUCKS -	van	case ratio	vari	uay -	uay -	nn ky	ky –	<u>ттку</u> –	пку –	by weight
BEFORE	U	200 vans, no cycles	200	U	U	U				U	U	254000	U	U	U	254000
		U vans, 168 cycles, 85 elec	_					_		_	_	_				
AETER	100	lvane 18 trucke	L D	168	85	18	L D.84	L _2	L D 425	1 2	. 2	I 0	1 67000	1 75650	⊥ <u>184734</u>	1/2850

Example distance

- The total distance driven by all vehicles in Greater London before and after the introduction of the new fleet and consolidation centre network
- Impacts of further scenarios after changes are calculated in % change, compared to real case before

					Distance	Scenario
Total distance	in miles per o	Jay				
Distance all	Distance all	Distance all		Total distance	% change in	
diesel vans	cycles (4.5	elec vans	Truck	vans+ clean	total	
(46 mi/round)	mi/round)	(4.5mi/round)	distance	vehicles+truck	distance	
322				322	0	
0	54	27	38	119	-63	Real

RegioneEmilia-Romagna

Changes are expressed as % of before $C = \left(\frac{A \times 100}{B}\right) - 100$ with:

- C = % change between before and after expressed as % of before
- B = before: with 100% diesel vans
- A = after: with 100% electric vans and microconsolidation centre(s)

Made possible by

Total distance in London

闻

lotal distance	<u>e in miles per c</u>	lay				
Distance all diesel vans (46 miles/round)	Distance all cycles (4.5 mi/round)	Distance all elec vans (4.5mi/round)	Truck distance	Total distance vans+ clean vehicles+ truck	% change in total distance	
784		- · ·		784	0	
0	126	63	76	265	-66	Clear Zone

Total distance	in miles per o	Jay				
Distance all	Distance all	Distance all		Total distance	% change in	
diesel vans (46 mi/round)	cycles (4.5 mi/round)	elec vans (4 5mi/round)	Truck distance	vans+ clean vehicles+ truck	total distance	
9200	inirioana,	(Hommodild)		9200	0	
0	1512	765	684	2961	-68	200 veh

41

Total distance driven in London according to various scenarios

Total distance driven in London

Impacts of scenarios, after changes, in % compared to real case BEFORE changes = e.g. adding other types of businesses

Change in total CO₂ emissions in London

Potential sectors (scenario B)

- Parcel services in B2B and B2C business, home deliveries to households
- General cargo logistics
- Stationery
- Clothes
- Fruit and vegetables
- Restaurants, pubs, and bars
- Administration and service offices

RegioneEmilia-Romagna

Recommendations

- 1. Facilitate a higher market share for electric freight vehicles
- 2. Test new loading space
- 3. Avoid PCNs for clean vehicles
- 4. Observe and monitor changes
- 5. Improve coordination
- 6. Authorities should not take operating responsibility for a consolidation centre
- 7. Cooperate with research and maintain expert knowledge on clean vehicles and consolidation

Concluding remarks

- Most scenarios show reductions in:
 - overall distance travelled
 - emissions
 - Kerbspace (loading) requirements.
- Challenge: growth in distance in inner-city area
- Private benefits for the company:
 - ability to react more quickly to customer requests
 - more targeted approach to certain delivery areas
 - improved image and positive public relation effects

