

TOOLS FOR MODELING URBAN FREIGHT DISTRIBUTION

Daniele Vigo – DEIS Univ. Bologna Bruxelles, May 4, 2011

This research has been performed in collaboration with Guido Gentile (DITS – Univ. Roma) with the support of Assessorato Mobilità e Trasporti and I.T.L. of the Emilia-Romagna Region

Talk outline

Backround and Motivation:

- CityPorts and Merope Interreg III/B projects
- Emilia-Romagna's towns logistic surveys

A unified modeling framework for Urban Logistics (CityGoods)

- Step 1: a demand generation model
- Step 2-3: distribution and assignment models
- Step 4: GityGoods modeling suite

Conclusions

Made possible by the INTERREG IVC programme

The CityPorts Project

CityPorts (EU INTERREG III/B 2003-05), coordinated by Regione Emilia-Romagna, proposed a general methodological framework for the design ad evaluation of City Logistics Actions (support initiatives):

Infrastructures

Policies and regulations …

The approach relies on the analysis of the different supply chains and their impact on the different zones of the urban area

Another twin project, Merope, involved other towns of the region with similar objectives

The Zones-Supply Chains Grid

Logistic characterization of towns is based on the construction of the Zones-Supply Chains (ZS) Grid as a "reading guide" of the town in Logistic terms

Logistic Actions and ZS Grid

A Logistic Action (Infrastructure, Policy) may be mapped into the ZS Grid to evaluate it effectiveness

Logistic Actions Evaluation

- Action mapping into a ZS Grid gives the basis for Action effect evaluation (and possible re-design)
- Need of a quantitative ZS Grid
- **Need of a Supply-Chain-based Demand Generation Model**
 - to define the ZS Grid
 - > to be used within classical transp. models

ER City logistic surveys

In the years 2003-05 Emilia-Romagna performed an extensive survey of City Logistics phenomenon for all ER towns

CityPorts, Merope, Regional programmes …

Huge and fine-grained data source

- Quite homogeneous (CityPorts survey model)
- ➤ 3 main surveys:
 - » Demand Generation (interviews at shops...),
 - » Demand Attraction (interviews at logistic operators)
 - » Flows/operations (interviews to vehicles)
- > 11 towns (all with > 50K inhabitants), thousands of interviews
 A unique modeling opportunity !

CityGoods Modeling framework

Unified modeling approach:

- Description of City Logistics phenomena
 - » For a specific town and for a regional territory
- Definition of qualitative and quantitative indicators of City Logistics in ER towns
- That may be used for evaluation and planning purposes
 - » CityPorts methodology and Classical transportation analysis
- **Classical modeling framework**

(Generation, Distribution, Assignment)

Demand Generation exploits the hierarchical structure of activity classification systems

Distribution takes into account that vehicles can perform more than one stop in a tour

Made possible by the INTERREG IVC programme

CityGoods package development

- The prototypes of the models were developed in 2004 for RER
- In 2005-06 models are validated on real-world data from RER surveys
- In 2006-07 the models were integrated into a unified package (CityGoods) tested and adopted by RER
- CityGoods is developed and commercialized by OPTIT and **Sistema**

8

Demand Generation Models

General survey: Russo & Comi (2004)

- gravitational, 4 Phases (Hutchinson 1974, Odgen 1992, List & Turnquist 1994, Taylor 1997, He & Crainic 1998, Gorys & Hausmanis 1999 ...): more suited to a urban scale
- input-output (Harris & Liu, 1998)
- spatial price equilibrium (Oppenheim 1994, Nagurney, 2002)

Some problems:

- Generation:
 - » intrinsic approximation introduced by aggregating many economic activities into few categories
 - » a given economic activity generates movements belonging to different Supply Chains
- Distribution: a vehicle performs many deliveries/pickups in a tour

9

Other experiences

FRETURB (L.E.T., Lyon, Fr): general model for the evaluation of the impact of Logistic Actions

- Based on 3 detailed surveys on French towns (Marseilles, Bordeaux) and Dijon)
- Regression-based model
- Software tool distributed by French Ministry of Transport to all French Municipality

VISEVA (Friedrich et al 2003), Good Trips (Boerkamps, 1999)

Daniele Vigo

Demand Generation Model

Objective: estimate the yearly number of operations generated by each SC - Zone

Starting Points:

- ER surveys on Demand Generators:
 - » Small samples wrt Universe (e.g. Bologna: 250-500 out of 35131)
 - » Rich of logistic information (operations generated per SC, time distribution, type of vehicles ...)

Universe

Daniele Vigo

- » Municipality, CCIAA Data ... ASIA ER Database
- » No Supply-chain related classification (only ATECO/NACE) economic classification, NAICS in USA ...)

Demand Generation Model (2)

Overall approach:

- No "a-priori" aggregation of activities into categories (SC)
- Characterize demand generation directly using the ATECO/NACE classification of the generators (\rightarrow operations per NACE code)
- \succ Hundreds of codes and small samples! \rightarrow Exploit the hierarchic structure of the classification within the model
- Use survey data to calibrate the model and define the specific SC generation models

Result:

Daniele Vigo

Very fine-grained information wrt to classical index-by-category approaches

ATECO-NACE classification tree

rin)

00

5 Digits code with hierarchic structure

Made possible by the INTERREG IVC programme

Daniele Vigo

ATECO-NACE tree (2)

Mapping of the Universe into the NACE tree gives immediate indicators of town structure (overall and spatial=per Zone)

00

Bologna Universe

UB	colore
0,1	
0,2	
0,5	
1	
2	
5	
10	
1000	

Daniele Vigo Bruxelles, 04/05/2011

NACE-Based Model

Main assumption

- The n. of operations generated by a specific NACE code (e.g. 502) Vehicle Maintenance) should take into account:
 - » Those generated by the "descendant" codes (5020, 5021, ... 50201,...,50205)
 - » Those generated by "parent" classes (50, 5)
- Measured by two contributes:
 - » the relative weight (n. of elements in the Universe) of the subtree rooted at the code
 - » relative weight of the path to the tree root

Daniele Vigo

Model Formulation

NACE tree structure:

- set of NACE codes Ν
- f(i) father of code $i \in N$
- $FS(j) = \{i \in N: f(i) = j\} j \in N$
- root of the tree r

GAR

number of yearly operations of the supply chain Mis $s \in S$ generated by code $i \in N$ (model output) m_{is} number of yearly operations associated to the link entering $i \in N$ (parameters to be determined by calibration)

Daniele Vigo

SUGAR

Model Formulation (2)

 $\begin{array}{ll} \mathsf{M}_{is} = \mathsf{W}_{is} + \mathsf{H}_{is} & i \in \mathsf{N} \\ \mathsf{W}_{is} \mbox{ contribution to } \mathsf{M}_{i} \mbox{ of the subtree with root i} \\ \mathsf{H}_{is} \mbox{ contrib. to } \mathsf{M}_{i} \mbox{ of the path from i to r (for leaves } \mathsf{M}_{is} = \mathsf{H}_{is}) \\ \mathsf{H}_{is} = \mathsf{m}_{is} + \mathsf{H}_{f(i) \, s} & i \in \mathsf{N} \\ \mbox{ (computed in topological order)} \\ \mathsf{W}_{is} = \sum_{j \in FS(i)} \beta_{j} \cdot (\mathsf{W}_{js} + \mathsf{m}_{js}) & i \in \mathsf{N} \\ \mbox{ (computed in reverse topological order)} \\ \beta_{i} \mbox{ probability that the child of f(i) is } i \in \mathsf{N} \\ \mbox{ (computed statistically from the Universe)} \end{array}$

NACE-Based Model (2)

The overall model defines the total number of operations of a SC per year generated as a function of:

- ➤ the NACE code
- > the n. of employees in each local unit

Survey data are used to

- calibrate the model
- Solution of the different attributes (parking type, time of service...) for each SC

18

NACE-Based Model (3)

A spatial model is derived by using

- user-defined Zones (Cityports Macro-Zones, Transportation studies) zones ...)
- distribution of the Universe in the Zones.
 - » through geocoding by using a commercial street network (Navteq) available for all towns
 - » Municipality-owned GIS ...

Daniele Vigo

CityGoods is a GIS application based on an ACCESS-like DBMS ...

00

面

File Procedure Net	Documents and S twork Assign Ci	iettings\Guido\Desk tyGoods Help	top\pesca\Transpor	tation\exec	,\data\CityGoo	odsDB18.mdb	×
	Apri Cerca in:	C LL // D L	el E		Ē 💣 🎟•	<u>? x </u>	
✓ X = 2710.765 m Done! Reset Print Zones	Documenti recenti Desktop Documenti Documenti Risorse del computer Risorse di rete	 bologna.mdb bologna_orig.mdb bologna_strade.dt bologna_strade.sh bologna_zone.dbf bologna_zone.shp bologna_zone.shx CityGoodsDB18.md ravenna_orig.mdb ravenna_strade.sf ravenna_strade.sf ravenna_strade.sf ravenna_strade.sf ravenna_strade.sf ravenna_strade.sf 	ravenna_zone.c ravenna_zone.c ravenna_zone.s r ravenna_zone.s r r r r r r r r r r r r r r r r r r r	dbf shp shx		Apri Annulla	1000 m
/05/2011	ALMA MATE	R STUDIORUM À DI BOLOGNA	* * * * * * * * iropean Union		Region	eEmilia-Roma	

Made possible by the INTERREG IVC programme

SUGAR

Daniele Vigo Bruxelles, 04

NAMES AND ADDRESS OF

SUGAR

CityGoods Overview

... with specific tools to model CityLogisitcs

European Union

 \mathfrak{DO}

It imports the street network (e.g. NavTeq shape file)

Made possible by the INTERREG IVC programme

SUGAR

22

It imports the City Zones (shape file)

00

SUGAR

Geocodes the survey data ...

00

SUGAR

Geocodes the Universe data ...

European Union

ാന

Imports the surveys to obtain the movements per SC and other logistics attributes

Dia

20

ø	🕫 CityGoods - C:\Documents and Settings\Guido\Desktop\pesca\Transportation\data\bologna.mdb 📃 🗌 🗙											
File	e Procedu	re Network	Assign City	Goods Help								
ĪΓ	┍╒╘╘╺╲╓┕╱											
1 4												
\ \$, .	1 828 6	 XX = J ∕a®∰		∕		k_ (1	• 2	51		•
2	1 1	77	: FR /1.2	7.1990	P R	$-\Delta C$	X A	<u>k</u> /	^	San /		
🔗 operazioni Records 📃 🗆 🗶 equenze Records 💷 🖉											5 <u>- D X</u>	
1		ער ↔ פ		• Hecold I								
	Ø									<u> </u>		<u> </u>
Ļ	filiera	filiera	giorno	ora	durata	collo	numero	peso 10	vettore	mez: 🔺	intervista filiera	movimenti 🔺
₽	4	1	3	4	10	6	10	12	2		100094 4	265
	4	4		- 4	10	4	3		1		1000351	360
	4	4		5	15	4	3		1		10003515	365
	1	1	3	5	5	5	3		1		100096 2	365
	2	2	3	5	10	5	20				100097 1	365
	11	11	5	4	15	7			2		100097 2	48
	1	1	2	4	10	6	10		2		100097 3	48
	1	1	2	4	10	4	3	120	2		100098 1	365
	1	1	3	5	5	3	6		2		100098 2	48
	4	4			15	4	8		2		100098 3	48
	4	4			15	7	8		2		100099 1	48
	3	3	2	3	30	4	6	4	2		100100 1	365
	1	1	3		10	4	5		2		100100 2	96
	4	4		6	10	4	30		2		100100 1	365
	1	1	2		5	4	1		2		100100 2	48
	4	4	2	5	5	5	2		2		100101 1	144
	<u> </u>		2	24		4			2	_ _	1001012	48 🔻
•										•		Þ

SUGAR

SUGAR

CityGoods Overview

Applies the generation model to obtain the number of movements per NACE Code and per year ...

 \mathfrak{DO}

😹 mod_gen Records												
	/ ゲ 🍢 🛼 🗘 目 目 🔣 🖪 Record 1 of 30492 🛛 🕨 🗎 🗘 🖓 😢											
	codice	filiera	mov_ramo_am0	mov_ramo_am1	mov_ramo_bm1	sqm_ramo_am0	_ramo_am1	no_bm1	nov_nodo_am0	nov_nodo_am1	nov_nodo_bm1	
►	52122								1272.331	1272.331	0	
	52121								1272.331	1272.331	0	
	5212		1137.966	1137.966	0	806.5079	709.2731	09.2731	1272.331	1272.331	0	
	5225		990.375	0	921.6	806.5079	709.2731	09.2731	1209	0	921.6	
	52250								1209	0	921.6	
	5225	2							1191	0	914.4	
	52250	2							1191	0	914.4	
	512		845	697	0	806.5079	709.2731	09.2731	845	845	0	
	5123								845	845	0	
	5122								845	845	0	
	51220								845	845	0	
	5121								845	845	0	
	51211								845	845	0	
	51212								845	845	0	·
	51250								845	845	0	·]
	5125								845	845	0	1
	51242								845	845	0	
	51241								845	845	0	
	5124								845	845	0	
	51230								845	845	0	
	5540								795	795	0	
	554		795	795	0	806.5079	709.2731	09.2731	795	795	0	
	55400								795	795	0	
	55231								716.5834	625.0557	16.05394	
	5523								716.5834	625.0557	16.05394	
	55220								716.5834	625.0557	16.05394	
	5522								716 5834	625.0557	16 05394	

... and produces the ZS matrix ...

🤕 m	at_zone_fil Rec	ords				_O×
1	$\mathcal{V} \mid \mathbb{K} \supset \mid$		d 1154 of 1908	▶ N 🗘 🕅	× 8 ¥	
0		•		•		•
	zona filiera	mov_m0	mov_m1	· · · · · · · · · · · · · · · · · · ·		<u>.</u>
	116 4	3853.106	5819.208			
	117 4	9573.541	11252.86			
	118 4	8931.61	90226.77			
	119 4	16658.01	23273.2			
	121 4	17782.69	16081.14			
	122 4	16109.45	17518.68			
	123 4	11932.43	98919.29			
	124 4	11861.79	23667.95			
	120 4	29318.97	28267.7			
	113 4	2652.931	1697.122			
	164 5	254.1905	525.525			
	155 5	5.567568	5.567568			
	156 5	526.2928	3088.591			
	157 5	2140.824	6281.725			
	158 5	2543.841	5891.189			
	159 5	324.7753	34034.26			
	160 5	873.0251	1197.292			
	161 5	305.0711	2046.911			
	163 5	289.6977	445.7951			_
	154 5	44.07935	312.0103			
	147 5	458.9999	411.4262			
	165 5	23.75425	0.2376081			
	162 5	632.8671	601.8587			
	153 5	389.1248	734.6183			
	152 5	187.0145	138.8989			
	151 5	1050.237	1947.977			
	150 5	980.9411	2577.624			_
iele \	Vigo	ALMA MATER ST	UDIORUM	* *		

Dia

00

NUMBER OF STREET OF

... and produces the ZS matrix ...

ാന

SUGAR

Distribution model uses Logistic Portals (Geocoded)...

ാന

Made possible by the INTERREG IVC programme

Computes all the distances between inner points and Portals

20

Made possible by the INTERREG IVC programme

Distribution: Gravitational model modified to account for multiple deliveries within each Zone and applied for each supply chain

ø	😴 filiere Records										
17	$\mathcal{A} \mathcal{V} \mathbb{N} \cong \blacksquare $										
(7								•		
	ID	consxgiro	coefdistanza	coefdistanzaLB	coefdistanzaUB	orexanno	equivalenti	veicolo	descrizione		
►	1	18	0.001			1000	1		freschi		
	10	17	0.001			1000	1		giornali		
	11	17	0.001			1000	1		fiori		
	12	17	0.001			1000	1		valori		
	13	17	0.001			1000	1		reverse		
	14	17	0.001			1000	1		pasti		
	15	17	0.001			1000	1		servizi		
	16	17	0.001			1000	1		carburanti		
	17	17	0.001			1000	1		automobili		
	2	19	0.001			1000	1		secchi		
	3	22	0.001			1000	1		surgelati		
	4	16	0.001			1000	1		nonfood		
	5	7	0.001			1000	1		appesi		
	6	17	0.001			1000	1		t_nonfood		
	7	17	0.001			1000	1		t_alimentari		
	8	17	0.001			1000	1		documenti		
	9	17	0.001			1000	1		farmaci		
		,									

... produces the OD matrices per supply chain that are assigned to the network (jointly with people movements)

20

... obtaining the freight vehicles flows

00

Made possible by the INTERREG IVC programme

SUGAR

NUMBER OF BRIDE OF

... data may be easily exported to be used by other applications (e.g. GIS)

00

Typical Use-Cases

Construction of the specific model for a given town using "its" surveys

Construction of the "regional" model using all the surveys (often covering different SCs)

Made possible by the INTERREG IVC programme

Typical Use-Cases (2)

Application of the town or regional model to other towns (without additional surveys)

Requirements:

- ➢ Universe (ISTAT, CCIAA …)
- User-defined Zones
- GIS Cartography o Commercial Street Network

Conclusions ...

Very effective modeling tool

- Soft" data requirements:
 - » Simple Universe data, NACE tree, commercial street graphs
- Fine granularity of results and excellent quality of real-world testing
- Easy portability of the model to different towns with/without specific additional surveys

Thank you for your attention

Daniele Vigo Bruxelles, 04/05/2011

